Group Analysis Based on Multilevel Bayesian for Fmri Data
نویسنده
چکیده
This paper suggests one method to process fMRI time series based on Bayesian inference for group analysis. The method is based on Bayesian inference to divide group into multilevel by session, subject and group levels. It compares covariance to select prior to reinforce posterior probability in group analysis. At the same time it combines classical statistics, i.e., t-statistics to obtain voxel activation at subject level as prior for Bayesian inference at group level. Through the method, it can effectively decrease computation expensive and reduce complexity. Therefore the experimental results show robust on Bayesian inference for group analysis.
منابع مشابه
A Bayesian multilevel model for fMRI data analysis
Bayesian approaches have been proposed by several functional magnetic resonance imaging (fMRI) researchers in order to overcome the fundamental limitations of the popular statistical parametric mapping method. However, the difficulties associated with subjective prior elicitation have prevented the widespread adoption of the Bayesian methodology by the neuroimaging community. In this paper, we ...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملEvaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کامل